Comparative Performance of Medium Voltage Overhead Distribution Lines Designs Submitted to Induced Voltages

2007 IEEE Lausanne Powertech, Lausanne, Switzerland, 1 - 5 July, 2007

Download PDF Download PDF


The aim of this paper is to present the results of the performance study of medium voltage overhead distribution lines against lightning discharges, in the way to define methodologies to reduce the system failures. The results are obtained within the partnership among the High Voltage Laboratory of the Federal University of Itajubá, AES Sul Utility Company and the University of Bologna. The resultant performance is presented in terms of expected faults for 100 km of line for a density of discharges to the ground (GDF) of 1 discharge/km²/year.
Commentaries on the relative performance and comparisons of different construction configurations of overhead lines are presented.


The standard medium voltage distribution network are subjected to incidence of direct lightning discharges and induced surges, that are one of the main causes of interruptions and failures of the lines.
The majority of the damages to the distribution network are caused by direct discharges, its destructive effects frequently extends to equipments and connected installations, with the possibility to cause personal injuries and material damages, beyond economic losses, due to out of income and the possibility of indemnities, penalties and fines.
When the lightning strikes the network directly, they commonly cause permanent damages, because they are high intensity discharges with high growth rate. For this kind of damage, the network remains off until its repair.
However, they can be deviated by tall structures, such as towers, buildings, high constructions, and trees. Even when the lightning does not intercept the network, they induce surges that travel throughout the lines. These surges are able to cause many damages and interruptions to the distribution network. For that reason, this work presents the relations between induced surges and direct discharges.
Some actions were been taken by the utilities for the prevention and minimization of the damages associated to the lightning discharges.
However, as the lightning discharges are random events, consequently, difficult to predict, the majority of these actions does not follow a study or a detailed analysis of the problem.
By this way, in the majority of the cases the actions were taken based on the knowledge of the engineer in charge, or based in rules defined without any effective evidence, by means of studies or by laboratory tests. As a result, many of them besides of presenting high cost are not effective. Among others, the distribution network reliability depends directly on its exposition to the lightning discharges. The topology of the distribution network is the major factor of influence for analysis [1], and its density and distribution results in a greater or minor probability of incidence of direct lightning discharges.
Once that the atmospheric discharges phenomena are random, this work considers that the parameter generation of the discharges follows the statistical data proposed by Anderson and Eriksson.
The Monte Carlo Method is used for the incidence distribution of the discharges and the Electro Geometrical Model for the interception point of the discharge.


[1] M. A. M. Saran, M. L. B. Martinez, H. R. P. M. de Oliveira “Performance of Medium Voltage Urban and Rural Distribution Lines Front Lightning Discharges and Induced Surges” (GROUND’2006 & 2nd LPE, November 2006, Maceió, Brazil)
[2] M. A. M. Saran, R. R. Bonon, M. L. B. Martinez, H. R. P. M. de Oliveira, C. A. Nucci, M. Paolone “Performance of Medium Voltage Overhead Distribution Lines Against LightnitningInduced Voltages: A Comparative Analysis” (GROUND’2006 & 2nd LPE, November 2006, Maceió, Brazil)
[3] IEEE working group on the lightning performance of distribution lines “Guide for improving the lightning performance of electric power overhead distribution lines” (IEEE Std 1410, 2004)
[4] IEEE Fast Front Transients Task Force “Modeling guidelines for fast front transients” (IEEE Trans. on PWRD, Vol. 11, No. 1, pgs. 493 – 506, Jan. 1996)
[5] Agrawal A.K., Price H.J., Gurbaxani S.H. “Transient response of a multiconductor transmission line excited by a nonuniform electromagnetic field” (IEEE Trans. on EMC 22-2, 1980, 119-129)
[6] Nucci C.A., Rachidi F., Ianoz M. and Mazzetti C. “Lightning-induced voltages on overhead power lines” (IEEE Trans. on EMC, Vol. 35, February 1993)
[7] Rachidi F., Nucci C.A., Ianoz M., Mazzetti C. “Influence of a lossy ground on lightning-induced voltages on overhead lines” (IEEE Trans. on EMC, Vol. 38, No. 3, pgs. 250-263, August 1996)
[8] Rachidi F., Nucci C.A., Ianoz M., “Transient analysis of multiconductor lines above a lossy ground” (IEEE Trans. on PWDR, Vol.14, No.1, pgs. 294-302, January 1999)
[9] Paolone M., Nucci C.A., Rachidi F. “A New Finite Difference Time Domain Scheme for the Evaluation of Lightning Induced Overvoltage on Multiconductor Overhead Lines” (Proc. 5th Int. Conf. on Power System Transient, vol. 2, Rio de Janeiro, Brazil, 2001, pgs. 596-602)
[10] Anderson R.B., Eriksson A.J. “Lightning parameters for engineering application” (Electra, No. 69, 1980)
[11] Chowdhuri P. “Estimation of flashover rates of overhead power distribution lines by lighting strokes to nearby ground” (IEEE Transactions on PWDR, Vol. 4, No. 3, pgs. 1982-1988, July 1989)
[12] Borghetti A., Nucci C.A. “Estimation of the frequency distribution of lightning induced voltages on an overhead line above a lossy ground: a sensitivity analysis” (in Proc. International Conference on Lightning Protection, Birmingham, United Kingdom, September, 1998)
[13] Borghetti A., Nucci C.A., Paolone M. “Statistical Evaluation of Lightning Performances of Distribution Lines” (Proc. of the International Conference on Power System Transient 24-28 June 2001, Rio de Janeiro, Brazil)
[14] Borghetti A., Nucci C.A., Paolone “An Improved Procedure for the Assessment of Overhead Line Indirect Lightning Performance and its Comparison with the IEEE Std. 1410 Method” (in press on IEEE Trans. on PWRD)
[15] De Salles, C., Figueira, A. D., Violin, A., Martinez, M. L. B., Oliveira, H. R. P. M., Oling, R. “Insulation Coordination for a 23 kV Medium Voltage Distribution” (Powertech, Bologna, Italy, June, 2003)

Back to Publications - Voltar à Publicações

© 2017-2020, Marco Aurélio M. Saran
All rights reserved