Distribution Reliability Analysis Program

O.H.S. Vicentini, H.R.P.M. de Oliveira, R.Oling, AES Sul
M. L. B. Martínez, M. A. Saran, R. J. Bachega, UNIFEI
A. Violin, C. Lefort, FUPAI

Abstract — The objective of this paper is to present a computer program developed for Windows to compute reliability indices for different customers and set of customers served by the same distribution feeder. This program deals with information obtained directly from utility database to create an equivalent network modeling and run contingency analytical simulations. The system’s average failure rates must be informed by the user, based on historical utility data, manufacturer test data or typical values.

The program enables to compute penalties and annual costs of energy interruptions and compare the obtained indices with the reliability index targets set by the national regulatory agency (ANEEL) for the different sets of customers and distribution feeders under analysis.

The program allows to analyze changes in the system rates and in the topology of the electrical network and, thus, to carry out a sensitive study to verify the effect of some different protection equipment and changes in the topology of the systems, justifying investments that can improve the reliability, the power quality, and reduce costs of energy interruption and other related costs.

Index Terms — reliability indices, set of customers, distribution feeder, contingency analytical simulations, system rates, index targets, penalties.

I. INTRODUCTION

Despite the fact that around 80% of the power interruptions occur in the distribution systems, the reliability analysis of these systems had never received much attention until a few years ago. However, with the restructuring of the Brazilian electric sector and the privatization of the power distribution utilities, this situation has changed. In 1996, ANEEL — National Agency of Electric Power (regulatory agency) — was established to inspect the electric sector companies and, in 2000, it created the resolutions (laws) RES 024 and RES 522, introducing new indicators and reliability index targets for each set of customers and expressions for the calculation of penalties in the event of violations of these targets.

In order to meet the targets set by the regulatory agency, most distribution utilities began to register digitally their lines, equipment and history of interruptions, thus making it easier to develop computational programs and tools for analysis of power flow, short circuit and reliability of the distribution systems.

Two different analyses are used to assess the reliability of the distribution systems: Historic and Predictive. Through the historic analysis, one can obtain the indices referring to the interruptions occurred in the system for a given period of time, generating diagnoses of the system’s past behavior. While the predictive analysis calculates the future expectation of the system’s behavior in the medium and long terms, combining the components failure rates, the repair duration, switching duration, for restoring the reliability for different protection device schemas and distribution line sections. Considering that these factors are random, by nature, it is necessary to use average values calculated from a database of interruptions and failures occurred. This way, it is possible to calculate reliability indices for the whole electric system or set of customers, like the SAIFI (System Average Interruption Frequency Index) and SAIDI (System Average Interruption Duration Index), as well as the reliability indices for each consumer. The method used in the predictive reliability analysis is the Analytical Method, faster and more accurate.

II. PROGRAM DESCRIPTION

The PCA (Feeder Reliability Program) is a computational tool for distribution feeder reliability analysis (median voltage — systems served by rated voltage less 34.5 kV) that enables the calculation of the reliability indices for each customer or set of customers and the penalties due to violations of the reliability index targets set by ANEEL — National Agency of Electric Power.

To do these calculations, the program uses information obtained directly from the company’s relational database or information that should be entered by the program’s user.

This way, one can foresee the system’s future behavior for different operating conditions and different protection equipment and configuration, evaluating their respective results in terms of reliability indices and their respective penalties.

Figure 1 shows the main steps and modules of the program.

This work was developed by the project “Reliability Analysis”, making part of the program of Research & Development of the Brazilian Electric Sector, driven by the National Agency of Electric Power (ANEEL), and financed by AES Sul - Distribuidora Gaúcha de Energia S/A.

H.R.P.M. de Oliveira works with AES Sul - Distribuidora Gaúcha de Energia S/A, São Leopoldo, RS, Brazil (e-mail: harmes.oliveira@aes.com)
R. Oling works with AES Sul - Distribuidora Gaúcha de Energia S/A, São Leopoldo, RS, Brazil (e-mail: renato.oling@aes.com)
O.H.S. Vicentini works with AES Sul - Distribuidora Gaúcha de Energia S/A, São Leopoldo, RS, Brazil (e-mail: Otavio.vicentini@aes.com)
M.L.B. Martínez works with Universidade Federal de Itajubá - Unifei, MG, Brazil (e-mail: marlaine@unifei.org.br)
A. Violin works with FUPAI — Fundação de Pesquisa e Assessoramento a Indústria, MG, Brazil (e-mail: aviolin@uniminas.com.br)

0-7803-8746-5/04/$20.00 ©2004 IEEE.
In step (1), the program accesses information on equipment and sections of a distribution feeder (or every feeder belonging to a given set of customers) in the company's relational database management system (SGBD). For that, queries in SQL (structured query language) and a standard interface, called ODBC (open data base connectivity) for connection with Oracle databases or other types of relational databases are used. The information obtained in this process is a bond of geographic information and different alphanumeric records that are stored in a local file with the name of the feeder under analysis in the station where the program is installed.

By opening this local file, the program displays general information and a chart with the feeder's topology, through which one can view, with different zoom levels, the distribution substation, primary sections and equipment, like transformers, switches, reclosers, fuses, capacitor banks, etc. Besides the georeferenced representation of all components, one can also see their main information and features. This kind of computational resource, linked to other tools, is called automated mapping and facilities management.

Figure 2 shows the feeder network topology after a local file of the program's data was opened.

In step (2), the user should inform the system's average failure rates. This information should include failure rates of the system's components and average interruption frequency and duration, replacements and maintenance of the different kinds of equipment and lines existing and recognized by the program, such as types of primary lines, protection equipment, switches, voltage regulators, capacitor banks and distribution transformers. This information is stored in a local file and should be obtained from the technical reading, with typical values, or based on the utility's interruption history, which is more recommended, considering that these values have a direct influence on the indices to be calculated.

In step (3), the reading of the reliability index targets for the sets of customers and the calculation of the customer index targets based on ANEEL Resolution 024/ are performed.

As a result, the program has all the input data necessary for the calculation of the reliability indicators of the feeder and of the set of customers served. However, before starting the calculations, one should perform an identification process that divides the circuit's components in buses and branches, with the geographic coordinates being related to the buses, while the main reliability information, such as average failure rates and interruption duration, are related to the branches, in which contingency simulations are performed during the calculation process, observing the results of momentary interruptions, sustained interruptions, planned maintenance and protection failures for each existing load bus, which, in this case, are the buses referring to the distribution transformers.

IV. DATA EDITION

The program also enables the editing of components (Step 4), allowing entering, removing or just changing the type of circuit component through the chart or through menus and lists of the existing different element types. These changes can be saved in different local files generating study alternatives. As a result, one can compare the results for different pieces of equipment and network topology, assessing investments and improvements in the system.
V. CALCULATION PROCESS

The calculations of the reliability indicators for each customer and set of customers are done in step (5), through an interactive analytical process, based on the simulation of simple contingencies in every component of a feeder.

Equations (1) and (2) are expressions used in the calculation of average duration and frequency indicators for each customer. In Brazil, these indicators are called DIC (duration of interruption by customer) and FIC (frequency of interruption by customer).

\[DIC = DIC_{interruptions} + DIC_{maintenance} + DIC_{replacements} + DIC_{protection_failure} \]
\[(1) \]

\[FIC = FIC_{interruptions} + FIC_{maintenance} + FIC_{replacements} + FIC_{protection_failure} \]
\[(2) \]

Once the individual indicators (DIC and FIC) are calculated for each load bus and respective served customers, the average duration and frequency indices are calculated for the sets of customers and feeders under analysis, indicators that are called DEC (equivalent duration by set of customers or system) and FEC (equivalent frequency by set of customers or system), in Brazil, and that can be calculated according to the expressions shown in equations (3), (4), (5) and (6).

\[FEC_{(Set_of_Customers)} = \frac{\sum_{i=1}^{k} FIC(i) \times Ca(i)}{Cc} \]
\[(3) \]

\[FEC_{(Feeder)} = \frac{\sum_{j=1}^{n} FEC(j) \times Ce(j)_{(Set_of_Customers)}}{Cal} \]
\[(4) \]

\[DEC_{(Set_of_Customers)} = \frac{\sum_{i=1}^{k} DIC(i) \times Ca(i)}{Cc} \]
\[(5) \]

\[DEC_{(Feeder)} = \frac{\sum_{j=1}^{n} DEC(j) \times Ce(j)_{(Set_of_Customers)}}{Cal} \]
\[(6) \]

Where:
- DIC i = DIC calculated for a given load bus i;
- FIC i = FIC calculated for a given load bus i;
- Ca i = Number of customer served at load bus i;
- i = Number of load buses where FIC and DIC are calculated;
- j = Number of served sets of customers under analysis;
- k = Total number of load buses (transformers) of the feeder that belong to a given set of customers;
- Cc = Total number of customers of the feeder that belong to a given set of customers;
- Cal = Total number of customers of the feeder;
- nc = Total number of sets of customers in the feeder.

After the calculation of the indicators (actual values - DICv, FICv, DECv and FECv), their respective penalties for occasional violations of the set targets (forecast values - DICp, FICp, DECp and FECp) are calculated.

Equations (7) and (8) show the expressions valid for the calculation of the average yearly DIC and FIC penalties, pursuant to ANEEL Resolution 24, whereas equations (9), (10) and (11) show the expressions used in the program for the calculation of the average yearly FEC and DEC penalties for each set of customers and for the feeder.

For DIC:

\[Penalties = \left(\frac{DIC_c}{DIC_t} - 1 \right) \cdot DIC_c \cdot \frac{CM}{8760} \cdot k \]
\[(7) \]

For FIC:

\[Penalties = \left(\frac{FIC_c}{FIC_t} - 1 \right) \cdot FIC_c \cdot \frac{CM}{8760} \cdot k \]
\[(8) \]

Where:
- DICc = Average duration index calculated by load bus and served customers, in hours per year.
- DICt = Reliability target set by load bus and served customers, in hours per year;
- FICc = Average interruption frequency calculated by load bus and served customers, in number of interruptions per year.
- FICt = Reliability target set by load bus and served customers, in number of interruptions per year;
- CM = Average yearly billings (without taxes) by load bus and served customers, being considered, in Brazilian Reais (R$);
- 8760 = Average number of hours in a year;
- k = Increase ratio fixed at 10 (ten).

For DEC:

\[Penalties = \sum_{j=1}^{nc} \left[\left(\frac{IND_c(j)}{INDs(j)} - 1 \right) \cdot DEC_c(j) \cdot \left(\frac{NCC(j)}{NCE} \right) \cdot \frac{CB}{8760} \right] \cdot K1 \cdot K2 \cdot K3 \cdot K4 \]
\[(9) \]

Where:
- INDc(j) = (FEC or DEC) Calculated average duration index by set of customers (j) in the period;
- INDs(j) = Standard indicator of the set of customers (j) in the period;
- DECc(j) = Standard DEC of the set of customers (j) in the period;
- NCC(j) = Average number of customers of the set of customers (j) in the period;
- NCE = Average Number of Customers of the Company in the period;
- CB = Company Bill;
- nc = Total sets of customers exceeding the DEC or FEC reliability indicator;
- K1 = Increase ratio (considering k1= 5);
- K2 = Reincidence ratio for violations of the indicator of the
set of customers (according to Art. 10 of ANEEL Resolution no. 318/1998, \(k_2 = 1 \) or \(1.5 \));

\[K_3 = \text{Ratio of existence of a previous sanction over the last four years (according to Art. 9, of ANEEL Resolution no. 318/1998; considering the application of the additional 2\% for each sanction); } \]

\[K_4 = \text{Worsening ratio (considering } k_4 = 1.20) \]

8760 - Number of hours in the year.

Note: The (FEC or DEC) indicator with the biggest deviation is considered.

After finishing the calculations, the user can also make linear changes in the billing and in the number of customers of the feeder, and recalculate the penalty amounts, thus being able to foresee results for an expected load growth.

VI. RESULTS

The reports with the reliability indices of each set of customers and of each customer grouped by the distribution transformer through which they are served are shown in the program's data output (Step 6). Besides these reports, one can view a diagnosis chart, which displays the topology of the feeder where the load buses are represented in three different colors according to the violation of the target of each transformer and respective served customers: green for the buses without violation, yellow for the buses with violation equal to or lower than 10\%, and red for the buses with violation higher than 10\%.

Through this chart, it is possible to note and separate this way the areas with problems in a same feeder, by comparing the determined results (history – real values) with the results calculated by the program and prioritizing more attention and investments in the areas with more violation and more weight in the system reliability indicators.

Figure 3 shows the chart of results and violations of targets calculated for Santa Maria 4 Substation feeder number 5, called Fernando Ferrari.